binaryninja/
base_detection.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
use binaryninjacore_sys::*;
use std::ffi::{c_char, CStr};

use crate::architecture::CoreArchitecture;
use crate::rc::{Array, CoreArrayProvider, CoreArrayProviderInner};
use std::num::NonZeroU32;
use std::ptr::NonNull;

pub type BaseAddressDetectionPOISetting = BNBaseAddressDetectionPOISetting;
pub type BaseAddressDetectionConfidence = BNBaseAddressDetectionConfidence;
pub type BaseAddressDetectionPOIType = BNBaseAddressDetectionPOIType;

/// This is the architecture name used to use the architecture auto-detection feature.
const BASE_ADDRESS_AUTO_DETECTION_ARCH: &CStr = c"auto detect";

pub enum BaseAddressDetectionAnalysis {
    Basic,
    ControlFlow,
    Full,
}

impl BaseAddressDetectionAnalysis {
    pub fn as_raw(&self) -> &'static CStr {
        match self {
            BaseAddressDetectionAnalysis::Basic => c"basic",
            BaseAddressDetectionAnalysis::ControlFlow => c"controlFlow",
            BaseAddressDetectionAnalysis::Full => c"full",
        }
    }
}

#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct BaseAddressDetectionResult {
    pub scores: Vec<BaseAddressDetectionScore>,
    pub confidence: BaseAddressDetectionConfidence,
    pub last_base: u64,
}

#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct BaseAddressDetectionScore {
    pub score: usize,
    pub base_address: u64,
}

#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct BaseAddressDetectionReason {
    pub pointer: u64,
    pub poi_offset: u64,
    pub poi_type: BaseAddressDetectionPOIType,
}

impl CoreArrayProvider for BaseAddressDetectionReason {
    type Raw = BNBaseAddressDetectionReason;
    type Context = ();
    type Wrapped<'a> = &'a Self;
}

unsafe impl CoreArrayProviderInner for BaseAddressDetectionReason {
    unsafe fn free(raw: *mut Self::Raw, _count: usize, _context: &Self::Context) {
        BNFreeBaseAddressDetectionReasons(raw)
    }

    unsafe fn wrap_raw<'a>(raw: &'a Self::Raw, _context: &'a Self::Context) -> Self::Wrapped<'a> {
        // SAFETY BNBaseAddressDetectionReason and BaseAddressDetectionReason
        // are transparent
        std::mem::transmute::<&BNBaseAddressDetectionReason, &BaseAddressDetectionReason>(raw)
    }
}

pub struct BaseAddressDetection {
    handle: NonNull<BNBaseAddressDetection>,
}

impl BaseAddressDetection {
    pub(crate) unsafe fn from_raw(handle: NonNull<BNBaseAddressDetection>) -> Self {
        Self { handle }
    }

    #[allow(clippy::mut_from_ref)]
    pub(crate) unsafe fn as_raw(&self) -> &mut BNBaseAddressDetection {
        &mut *self.handle.as_ptr()
    }

    /// Indicates whether base address detection analysis was aborted early
    pub fn aborted(&self) -> bool {
        unsafe { BNIsBaseAddressDetectionAborted(self.as_raw()) }
    }

    /// Aborts base address detection analysis
    ///
    /// NOTE: Does not stop base address detection until after initial analysis has completed, and
    /// it is in the base address enumeration phase.
    pub fn abort(&self) {
        unsafe { BNAbortBaseAddressDetection(self.as_raw()) }
    }

    /// Returns a list of reasons that can be used to determine why a base
    /// address is a candidate
    pub fn get_reasons(&self, base_address: u64) -> Array<BaseAddressDetectionReason> {
        let mut count = 0;
        let reasons =
            unsafe { BNGetBaseAddressDetectionReasons(self.as_raw(), base_address, &mut count) };
        unsafe { Array::new(reasons, count, ()) }
    }

    pub fn scores(&self, max_candidates: usize) -> BaseAddressDetectionResult {
        let mut scores = vec![BNBaseAddressDetectionScore::default(); max_candidates];
        let mut confidence = BNBaseAddressDetectionConfidence::NoConfidence;
        let mut last_base = 0;
        let num_candidates = unsafe {
            BNGetBaseAddressDetectionScores(
                self.as_raw(),
                scores.as_mut_ptr(),
                scores.len(),
                &mut confidence,
                &mut last_base,
            )
        };
        scores.truncate(num_candidates);
        // SAFETY BNBaseAddressDetectionScore and BaseAddressDetectionScore
        // are transparent
        let scores = unsafe {
            std::mem::transmute::<Vec<BNBaseAddressDetectionScore>, Vec<BaseAddressDetectionScore>>(
                scores,
            )
        };
        BaseAddressDetectionResult {
            scores,
            confidence,
            last_base,
        }
    }

    /// Initial analysis and attempts to identify candidate base addresses
    ///
    /// NOTE: This operation can take a long time to complete depending on the size and complexity
    /// of the binary and the settings used.
    pub fn detect(&self, settings: &BaseAddressDetectionSettings) -> bool {
        let mut raw_settings = BaseAddressDetectionSettings::into_raw(settings);
        unsafe { BNDetectBaseAddress(self.handle.as_ptr(), &mut raw_settings) }
    }
}

impl Drop for BaseAddressDetection {
    fn drop(&mut self) {
        unsafe { BNFreeBaseAddressDetection(self.as_raw()) }
    }
}

/// Build the initial analysis.
///
/// * `analysis` - analysis mode
/// * `min_strlen` - minimum length of a string to be considered a point-of-interest
/// * `alignment` - byte boundary to align the base address to while brute-forcing
/// * `low_boundary` - lower boundary of the base address range to test
/// * `high_boundary` - upper boundary of the base address range to test
/// * `poi_analysis` - specifies types of points-of-interest to use for analysis
/// * `max_pointers` - maximum number of candidate pointers to collect per pointer cluster
pub struct BaseAddressDetectionSettings {
    arch: Option<CoreArchitecture>,
    analysis: BaseAddressDetectionAnalysis,
    min_string_len: u32,
    alignment: NonZeroU32,
    lower_boundary: u64,
    upper_boundary: u64,
    poi_analysis: BaseAddressDetectionPOISetting,
    max_pointers: u32,
}

impl BaseAddressDetectionSettings {
    pub(crate) fn into_raw(value: &Self) -> BNBaseAddressDetectionSettings {
        let arch_name = value
            .arch
            .map(|a| a.name().as_ptr())
            .unwrap_or(BASE_ADDRESS_AUTO_DETECTION_ARCH.as_ptr() as *const c_char);
        BNBaseAddressDetectionSettings {
            Architecture: arch_name,
            Analysis: value.analysis.as_raw().as_ptr(),
            MinStrlen: value.min_string_len,
            Alignment: value.alignment.get(),
            LowerBoundary: value.lower_boundary,
            UpperBoundary: value.upper_boundary,
            POIAnalysis: value.poi_analysis,
            MaxPointersPerCluster: value.max_pointers,
        }
    }

    pub fn arch(mut self, value: CoreArchitecture) -> Self {
        self.arch = Some(value);
        self
    }

    pub fn analysis(mut self, value: BaseAddressDetectionAnalysis) -> Self {
        self.analysis = value;
        self
    }

    pub fn min_strlen(mut self, value: u32) -> Self {
        self.min_string_len = value;
        self
    }

    pub fn alignment(mut self, value: NonZeroU32) -> Self {
        self.alignment = value;
        self
    }

    pub fn low_boundary(mut self, value: u64) -> Self {
        assert!(
            self.upper_boundary >= value,
            "upper boundary must be greater than lower boundary"
        );
        self.lower_boundary = value;
        self
    }

    pub fn high_boundary(mut self, value: u64) -> Self {
        assert!(
            self.lower_boundary <= value,
            "upper boundary must be greater than lower boundary"
        );
        self.upper_boundary = value;
        self
    }

    pub fn poi_analysis(mut self, value: BaseAddressDetectionPOISetting) -> Self {
        self.poi_analysis = value;
        self
    }

    pub fn max_pointers(mut self, value: u32) -> Self {
        assert!(value > 2, "max pointers must be at least 2");
        self.max_pointers = value;
        self
    }
}

impl Default for BaseAddressDetectionSettings {
    fn default() -> Self {
        BaseAddressDetectionSettings {
            arch: None,
            analysis: BaseAddressDetectionAnalysis::Full,
            min_string_len: 10,
            alignment: 1024.try_into().unwrap(),
            lower_boundary: u64::MIN,
            upper_boundary: u64::MAX,
            poi_analysis: BaseAddressDetectionPOISetting::POIAnalysisAll,
            max_pointers: 128,
        }
    }
}