binaryninja/
operand_iter.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
use binaryninjacore_sys::BNGetHighLevelILByIndex;
use binaryninjacore_sys::BNGetMediumLevelILByIndex;
use binaryninjacore_sys::BNHighLevelILOperation;
use binaryninjacore_sys::BNMediumLevelILOperation;

use crate::high_level_il::{
    HighLevelILFunction, HighLevelILInstruction, HighLevelInstructionIndex,
};
use crate::medium_level_il::{
    MediumLevelILFunction, MediumLevelILInstruction, MediumLevelInstructionIndex,
};
use crate::rc::{Ref, RefCountable};
use crate::variable::{SSAVariable, Variable};

// TODO: This code needs to go away IMO, we have the facilities to do this for each IL already!

pub trait ILFunction {
    type Instruction;
    type InstructionIndex: From<u64>;

    // TODO Actually this is il expression from index!
    fn il_instruction_from_index(&self, instr_index: Self::InstructionIndex) -> Self::Instruction;
    fn operands_from_index(&self, instr_index: Self::InstructionIndex) -> [u64; 5];
}

impl ILFunction for MediumLevelILFunction {
    type Instruction = MediumLevelILInstruction;
    type InstructionIndex = MediumLevelInstructionIndex;

    fn il_instruction_from_index(&self, instr_index: Self::InstructionIndex) -> Self::Instruction {
        self.instruction_from_expr_index(instr_index).unwrap()
    }

    fn operands_from_index(&self, instr_index: Self::InstructionIndex) -> [u64; 5] {
        // TODO: WTF?!?!?!
        let node = unsafe { BNGetMediumLevelILByIndex(self.handle, instr_index.0) };
        assert_eq!(node.operation, BNMediumLevelILOperation::MLIL_UNDEF);
        node.operands
    }
}

impl ILFunction for HighLevelILFunction {
    type Instruction = HighLevelILInstruction;
    type InstructionIndex = HighLevelInstructionIndex;

    fn il_instruction_from_index(&self, instr_index: Self::InstructionIndex) -> Self::Instruction {
        self.instruction_from_expr_index(instr_index).unwrap()
    }

    fn operands_from_index(&self, instr_index: Self::InstructionIndex) -> [u64; 5] {
        let node = unsafe { BNGetHighLevelILByIndex(self.handle, instr_index.0, self.full_ast) };
        assert_eq!(node.operation, BNHighLevelILOperation::HLIL_UNDEF);
        node.operands
    }
}

pub struct OperandIter<F: ILFunction + RefCountable> {
    function: Ref<F>,
    remaining: usize,
    next_iter_idx: Option<usize>,
    current_iter: OperandIterInner,
}

impl<F: ILFunction + RefCountable> OperandIter<F> {
    pub(crate) fn new(function: &F, idx: usize, number: usize) -> Self {
        // Zero-length lists immediately finish iteration
        let next_iter_idx = if number > 0 { Some(idx) } else { None };
        Self {
            function: function.to_owned(),
            remaining: number,
            next_iter_idx,
            current_iter: OperandIterInner::empty(),
        }
    }

    pub fn pairs(self) -> OperandPairIter<F> {
        assert_eq!(self.len() % 2, 0);
        OperandPairIter(self)
    }

    pub fn exprs(self) -> OperandExprIter<F> {
        OperandExprIter(self)
    }

    pub fn vars(self) -> OperandVarIter<F> {
        OperandVarIter(self)
    }

    pub fn ssa_vars(self) -> OperandSSAVarIter<F> {
        OperandSSAVarIter(self.pairs())
    }
}

impl<F: ILFunction + RefCountable> Iterator for OperandIter<F> {
    type Item = u64;

    fn next(&mut self) -> Option<Self::Item> {
        if let Some(item) = self.current_iter.next() {
            self.remaining -= 1;
            Some(item)
        } else {
            // Will short-circuit and return `None` once iter is exhausted
            let iter_idx = self.next_iter_idx?;
            let iter_idx = F::InstructionIndex::from(iter_idx as u64);
            let operands = self.function.operands_from_index(iter_idx);

            let next = if self.remaining > 4 {
                self.next_iter_idx = Some(operands[4] as usize);
                &operands[..4]
            } else {
                self.next_iter_idx = None;
                &operands[..self.remaining]
            };

            self.current_iter = OperandIterInner::from_slice(next);
            self.next()
        }
    }
}

impl<F: ILFunction + RefCountable> ExactSizeIterator for OperandIter<F> {
    fn len(&self) -> usize {
        self.remaining + self.current_iter.len()
    }
}

struct OperandIterInner {
    arr: [u64; 4],
    idx: usize,
}

impl OperandIterInner {
    fn from_slice(slice: &[u64]) -> Self {
        assert!(slice.len() <= 4);
        let idx = 4 - slice.len();
        let mut arr = [0; 4];
        arr[idx..].copy_from_slice(slice);
        Self { arr, idx }
    }

    fn empty() -> Self {
        Self {
            arr: [0; 4],
            idx: 4,
        }
    }
}

impl Iterator for OperandIterInner {
    type Item = u64;

    fn next(&mut self) -> Option<Self::Item> {
        if self.idx < 4 {
            let val = self.arr[self.idx];
            self.idx += 1;
            Some(val)
        } else {
            None
        }
    }
}

impl ExactSizeIterator for OperandIterInner {
    fn len(&self) -> usize {
        4 - self.idx
    }
}

pub struct OperandPairIter<F: ILFunction + RefCountable>(OperandIter<F>);

impl<F: ILFunction + RefCountable> Iterator for OperandPairIter<F> {
    type Item = (u64, u64);

    fn next(&mut self) -> Option<Self::Item> {
        let first = self.0.next()?;
        let second = self.0.next()?;
        Some((first, second))
    }
}
impl<F: ILFunction + RefCountable> ExactSizeIterator for OperandPairIter<F> {
    fn len(&self) -> usize {
        self.0.len() / 2
    }
}

pub struct OperandExprIter<F: ILFunction + RefCountable>(OperandIter<F>);

impl<F: ILFunction + RefCountable> Iterator for OperandExprIter<F> {
    type Item = F::Instruction;

    fn next(&mut self) -> Option<Self::Item> {
        self.0
            .next()
            .map(F::InstructionIndex::from)
            .map(|idx| self.0.function.il_instruction_from_index(idx))
    }
}

impl<F: ILFunction + RefCountable> ExactSizeIterator for OperandExprIter<F> {
    fn len(&self) -> usize {
        self.0.len()
    }
}

pub struct OperandVarIter<F: ILFunction + RefCountable>(OperandIter<F>);

impl<F: ILFunction + RefCountable> Iterator for OperandVarIter<F> {
    type Item = Variable;

    fn next(&mut self) -> Option<Self::Item> {
        self.0.next().map(Variable::from_identifier)
    }
}
impl<F: ILFunction + RefCountable> ExactSizeIterator for OperandVarIter<F> {
    fn len(&self) -> usize {
        self.0.len()
    }
}

pub struct OperandSSAVarIter<F: ILFunction + RefCountable>(OperandPairIter<F>);

impl<F: ILFunction + RefCountable> Iterator for OperandSSAVarIter<F> {
    type Item = SSAVariable;

    fn next(&mut self) -> Option<Self::Item> {
        self.0.next().map(|(id, version)| {
            let var = Variable::from_identifier(id);
            SSAVariable::new(var, version as _)
        })
    }
}

impl<F: ILFunction + RefCountable> ExactSizeIterator for OperandSSAVarIter<F> {
    fn len(&self) -> usize {
        self.0.len()
    }
}